Mark Scheme (Results)

January 2021
Pearson Edexcel International GCSE
In Chemistry (4CH1) Paper 1C and Science
(Double Award) (4SD0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021
Publications Code 4SD0_1C_2101_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
2 (a) (i) (ii) (iii)	A A is the correct answer because $100^{\circ} \mathrm{C}$ is above the boiling point of W B is not the correct answer because X is a solid at $100^{\circ} \mathrm{C}$ C is not the correct answer because Y is a solid at $100^{\circ} \mathrm{C}$ D is not the correct answer because Z is a solid at $100^{\circ} \mathrm{C}$ B B is the correct answer because X is a liquid for $1840^{\circ} \mathrm{C}$ A is not the correct answer because W is a liquid for $67^{\circ} \mathrm{C}$ C is not the correct answer because Y is a liquid for $1150^{\circ} \mathrm{C}$ D is not the correct answer because Z is a liquid for $330^{\circ} \mathrm{C}$ C C is the correct answer because Y is a liquid at $1000^{\circ} \mathrm{C}$ and a gas at $2000^{\circ} \mathrm{C}$ A is not the correct answer because W is a gas at $1000^{\circ} \mathrm{C}$ and at $2000^{\circ} \mathrm{C}$ B is not the correct answer because X is a liquid at $1000^{\circ} \mathrm{C}$ and $2000^{\circ} \mathrm{C}$ D is not the correct answer because Z is a gas at $1000^{\circ} \mathrm{C}$ and at $2000^{\circ} \mathrm{C}$		1 1
(b)	ionic	ALLOW electrovalent	1
(c)	the (impure) substance will melt over a range of temperatures	ALLOW the (impure) substance will have a lower melting point	1
			5 marks

Question number	Answer	Notes	Marks
3 (a) (i)	M1 dissolving M2 diffusion	Answers can be in either order	2
(b) (i)	An explanation that links any two of the following points M1 crystals dissolve faster M2 (potassium iodide/ lead nitrate/ water) particles move faster / (lead/ iodide) ions move faster / rate of diffusion increases M3 therefore (lead and iodide) ions/ particles meet / collide after a shorter period of time/ sooner	ALLOW (potassium iodide /lead nitrate/ water) particles have more energy ALLOW molecules in place of particles if referring to water IGNORE references to more collisions or more energetic collisions	2
(c) (i) (ii)	3 / three $2+1+2$	ALLOW Pb ${ }^{2+}$	1 1
(d)	$\begin{aligned} & \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{KI}(\mathrm{aq}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+ \\ & \quad 2 \mathrm{KNO}_{3}(\mathrm{aq}) \end{aligned}$	ALLOW multiples and fractions	1
			7 marks

Question number	Answer	Notes	Marks
4 (a)	Example calculation M1 (volume of oxygen =) $100-25$ OR $75\left(\mathrm{~cm}^{3}\right)$ M2 $75 \div 365 \times 100$ M3 20.5 (\%)	Correct answer of 20.5 \% with or without working scores 3 ALLOW ecf from M1 ALLOW ecf from M2 ALLOW 2 or more significant figures REJECT incorrect rounding Use of 265 instead of 365 gives an answer of 28.3 and scores 2 Alternative method M1 (volume of air left $\Rightarrow 265+25$ OR 290 (cm^{3}) $\text { M2 } 290 \div 365 \times 100 \text { OR }$ $79.5 \text { (\%) }$ M3 (100-79.5 =) 20.5 (\%)	3
(b) (i) (ii)	M1 paint provides a barrier M2 which prevents oxygen / water getting to /reacting with the iron M1 zinc is more reactive/higher in the reactivity series (than iron) M2 zinc will oxidise / react / corrode instead of /before iron	ALLOW paint forms a coating (on the iron) / paint is non-permeable ALLOW air ALLOW zinc is a sacrificial metal IGNORE references to zinc rusting IGNORE references to galvanising	2
			7 marks

Question number	Answer	Notes	Marks
5 (a)	Method	ALLOW filtering ALLOW distillation REJECT simple distillation or distillation	4
	filtration		
	simple distillation or fractional distillation		
	fractional distillation		
	crystallisation		
(b) (i)	M1 A and B	M2 dep on M1 correct or missing	2
	M2 because they are the same height /moved the same distance up the paper / have the same R_{f} values as the spots in the purple ink		
	M1 D		2
	M2 because the spot is closest to the start line /travelled the least distance (from the start line) / has the lowest R_{f} value		
		M2 dep on M1 correct or missing	
(c)	Example calculation	Correct answer of 86 or $86.4(\mathrm{~mm})$ with or	2
	$\text { M1 } 120 \times 0.72$	without working scores 2	
	M2 86/86.4(mm)		

Question number		wer	Notes	Marks
6 (a)			if barium sulfate and calcium carbonate correct but without including 'precipitate of' scores 1 out of 2 ALLOW correct formulae	3
	precipitate of barium carbonate	precipitate of barium sulfate		
	no precipitate	no precipitate		
	precipitate of calcium carbonate	precipitate of calcium sulfate		
(b)	A description that refers to any six of the following points			6
	M1 do a flame test		ACCEPT any description of a flame test	
	M2 sodium chloride produces a yellow flame		ACCEPT yellow-orange or orange	
			IGNORE any flame colour given for the potassium compounds	
	M3 add acid		ALLOW any named acid	
	M4 potassium carbonate effervesces / bubbles		ACCEPT carbon dioxide/gas given off which turns limewater cloudy for M4	
			M4 is dep on M3	
	M5 add dilute nitric acid			
	M6 add silver nitrate (solution)			
	M7 potassium chloride gives a white precipitate		M7 and M8 are dep on M6	
	M8 potassium iodide gives a yellow precipitate			
			ALLOW addition of chlorine/bromine solution as an alternative to M6	
			M7 no colour change with potassium chloride	

| M8 solution turns brown |
| :--- | :--- | :--- | :--- |
| with potassium iodide |
| If this alternative given no |
| M5 |\quad| 9 marks |
| :--- |

Question number	Answer	Notes	Marks
8 (a)	M1 solid M2 dark grey / black		2
(b) (i) (ii)	Example calculation M1 $(51 \times 79)+(49 \times 81)$ OR 7998 M2 $7998 \div 100$ M3 80.0 same electron configuration	80.0 with no working scores 3 79.9 with no working scores 1 79.98 or 80 with no working scores 2 ALLOW same (total) number of electrons IGNORE same number of electrons in the outer shell IGNORE references to same number of protons	3
(c) (i)	An explanation that links the following three points M1 the order of reactivity is chlorine (most), bromine and iodine (least) M2 chlorine (is most reactive because it) displaces bromine and iodine/ oxidises bromide and iodide (ions) / reacts with sodium bromide and sodium iodide M3 bromine (is less reactive than chlorine since it) only displaces iodine / only oxidises iodide (ions) / only reacts with sodium iodide	ACCEPT bromine is only displaced by chlorine and iodine is displaced by chlorine and bromine scores M2 and M3 ALLOW chlorine has two reactions, bromine has one reaction and iodine no reactions for 1 mark out of M2 and M3 Deduct 1 mark for incorrect use of ine	3

(ii)	bromine cannot displace itself / bromine does not react with sodium bromide OWTTE M1 bromine is reduced and iodide (ions)/l- is oxidised M2 bromine gains electrons and iodide (ions)/Iloses electrons OR M1 bromine gains electrons so is reduced M2 iodide (ions) /l- loses electrons so is oxidised	and ide e.g. bromine displaces iodide ALLOW there would be no reaction Deduct 1 mark for mention of iodine (ions) being oxidised or losing electrons REJECT iodine (ions) loses electrons so is oxidised	1 2

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 9 (a) \& \begin{tabular}{l}
M1 (propane/it) contains hydrogen and carbon (atoms) \\
M2 only
\end{tabular} \& \begin{tabular}{l}
REJECT carbon and hydrogen molecules \\
M2 is dependent on mention of just carbon and hydrogen in M1
\end{tabular} \& 2 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
carbon monoxide \\
it decreases the capacity of the blood to transport oxygen OWTTE
\end{tabular} \& \begin{tabular}{l}
ALLOW CO \\
ALLOW carbon monoxide binds to haemoglobin
\end{tabular} \& \[
1
\]
\[
1
\] \\
\hline (c) \& \begin{tabular}{l}
M1 (strong electrostatic) attraction between (bonding) pair of electrons \\
M2 (and) nuclei (of both atoms) \\
OR \\
M1 (bonding) pair of electrons \\
M2 attracted to nuclei
\end{tabular} \& \begin{tabular}{l}
REJECT nucleus \\
REJECT nucleus \\
0 marks if reference to intermolecular forces between atoms
\end{tabular} \& 2 \\
\hline (d) \& \begin{tabular}{l}
An explanation that links the following three points \\
M1 (crude oil) produces more long chain hydrocarbons than can be used directly OWTTE \\
M2 shorter chain alkanes are more flammable /more useful as fuels \\
M3 alkenes are used to make polymers / plastics
\end{tabular} \& \begin{tabular}{l}
ALLOW less demand for long chain hydrocarbons \\
ALLOW shorter chain alkanes/hydrocarbons are more useful
\end{tabular} \& 3 \\
\hline \begin{tabular}{l}
(e) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\(\mathrm{M1} \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}\) \\
M2 HBr \\
substitution
\end{tabular} \& ALLOW polysubstituted product if correct balancing number in front of \(\mathrm{Br}_{2}\) and HBr \& 2

1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
10 (a) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
curve of best fit \\
M1 lines shown on graph \\
M2 value correctly read from graph (expected value between 97 and \(103^{\circ} \mathrm{C}\)) \\
An explanation that links the following three points \\
M1 the boiling point increases as the number of carbons / the chain length increases \\
M2 because the intermolecular forces (of attraction) get stronger \\
M3 and therefore take more energy to overcome / break
\end{tabular} \& \begin{tabular}{l}
REJECT dot to dot line \\
ALLOW extra point on curve at 7 carbon atoms \\
ACCEPT value to \(\pm 1^{\circ} \mathrm{C}\) \\
ALLOW boiling point increases as the \(\mathrm{M}_{\mathrm{r}}\) increases \\
REJECT directly proportional \\
M3 dep on M2 \\
Any mention of breaking covalent bonds does not score M2 or M3
\end{tabular} \& 1
2

3

\hline (b) \& | M1 same molecular formula |
| :--- |
| M2 different displayed / structural formulae | \& ALLOW different structures/ different arrangement of atoms \& 2

\hline | (c) |
| :--- |
| (i) |
| (ii) | \& | $\begin{gathered} \text { M1 } 82.8 \div 12 \text { or } 6.9 \\ 17.2 \div 1 \text { or } 17.2 \end{gathered}$ |
| :--- |
| M2 (divide by smallest to give) 1:2.5 which is 2:5 $\mathrm{C}_{4} \mathrm{H}_{10}$ | \& | 0 marks if upside down calculation or use of atomic numbers |
| :--- |
| ACCEPT alternative methods | \& 2

1

\hline
\end{tabular}

(d)	M 1 moles of $\mathrm{CO}_{2}=7$ or $\mathrm{X}=7$ M 2 moles of $\mathrm{H}_{2} \mathrm{O}=8$ or $\mathrm{Y}=8$ M 3 balancing number $=11$ or $\mathrm{Z}=11$	ALLOW ecf from incorrect values of X and Y	

Question number	Answer	Notes	Marks
11 (a) (i) (ii)	glowing splint relights A description that refers to the following three points M1 filter out manganese(IV) oxide / solid M2 leave to dry M3 same mass/ 1g of manganese(IV) oxide / solid	REJECT burning splint	1 3
(b)	$\text { M1 } 280 \div 120$ $\text { M2 } 2.33$	ALLOW ecf from M1 ALLOW any number of significant figures except 1	2
	An explanation that links the following three points M1 the concentration of hydrochloric acid is greatest	ALLOW the surface area of zinc is greatest ALLOW greatest number of/more particles (of hydrochloric acid/ zinc)	3
	M2 therefore there are more collisions M3 per unit time	More frequent collisions scores M2 and M3 Max 1 if incorrect reference to energy	2
	M1 curve above original and starts at 0 M2 curve goes flat at same volume ($410 \mathrm{~cm}^{3}$)		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

